Abstract

The tellurite resistance (Ter) determinant of the IncP alpha plasmid RK2Ter, a variant of RK2 (also called RP4), is located between the kilA and korA genes involved in plasmid replication control. Transcriptional and translational fusions were constructed between the gene for beta-galactosidase and the kilA and Ter genes by using the transpositional phage mini-Mu. These fusions indicated that the Ter genes are transcribed in the same direction as kilA and that transcription and translation of the cloned kilA gene are occurring and may not be lethal to the bacterial cell even in the absence of korA. The nucleotide sequence of this region was determined, and three open reading frames (ORFs) were identified. The first ORF codes for KilA, a 28-kDa hydrophilic protein. The second ORF, telA, codes for a hydrophilic protein of 42 kDa. The third ORF, telB, codes for a hydrophobic protein of 32 kDa. This protein appears to be located in the inner membrane of the bacterial cell, since fusions of TelB to alkaline phosphatase were obtained by using TnphoA. All three proteins were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after overproduction using the T7 RNA polymerase/promoter system. The same three proteins were produced when Tes and Ter derivatives of RP4 were expressed in an in vitro transcription-translation system. A single Ser-to-Cys missense mutation in telB was found to be responsible for mutation of RK2 to Ter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.