Abstract

The objective of this study was to comprehensively identify the target genes regulated by the RNA polymerase-binding transcription factor DksA in Escherichia coli, and to clarify the role of DksA in multi-drug resistance. A clinical E. coli strain, E8, was selected to construct the dksA gene deletion mutant by using the Red recombination system. The minimum inhibitory concentrations of 12 antibiotics in the E8ΔdksA (mutant) were markedly lower than those in the wild-type strain, E8. Genes expressed differentially in the wild-type and dksA mutant were detected using RNA-Seq, and were validated by performing quantitative real-time polymerase chain reaction. In total, 168 differentially expressed genes were identified in E8ΔdksA, including 81 upregulated and 87 downregulated genes. Many of the genes identified are involved in metabolism, two-component systems, transcriptional regulators and transport/membrane proteins. Interestingly, genes encoding the transcriptional regulator, MarR, which is known to repress the multiple drug resistance operon, marRAB; MdfA, a transport protein that exhibits multi-drug efflux activities; and oligopeptide transport system proteins OppA and OppD were among those differentially expressed, and could potentially contribute to the increased drug susceptibility of E8ΔdksA. In conclusion, DksA plays an important role in the multi-drug resistance of this E. coli strain, and directly or indirectly regulates the expression of several genes related to antibiotic resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call