Abstract
BackgroundEnterohemorrhagic Escherichia coli (EHEC) are responsible for severe diseases in humans, and the ruminant digestive tract is considered as their main reservoir. Their excretion in bovine feces leads to the contamination of foods and the environment. Thus, providing knowledge of processes used by EHEC to survive and/or develop all along the bovine gut represents a major step for strategies implementation.ResultsWe compared the transcriptome of the reference EHEC strain EDL933 incubated in vitro in triplicate samples in sterile bovine rumen, small intestine and rectum contents with that of the strain grown in an artificial medium using RNA-sequencing (RNA-seq), focusing on genes involved in stress response, adhesion systems including the LEE, iron uptake, motility and chemotaxis. We also compared expression of these genes in one digestive content relative to the others. In addition, we quantified short chain fatty acids and metal ions present in the three digestive contents. RNA-seq data first highlighted response of EHEC EDL933 to unfavorable physiochemical conditions encountered during its transit through the bovine gut lumen. Seventy-eight genes involved in stress responses including drug export, oxidative stress and acid resistance/pH adaptation were over-expressed in all the digestive contents compared with artificial medium. However, differences in stress fitness gene expression were observed depending on the digestive segment, suggesting that these differences were due to distinct physiochemical conditions in the bovine digestive contents. EHEC activated genes encoding three toxin/antitoxin systems in rumen content and many gene clusters involved in motility and chemotaxis in rectum contents. Genes involved in iron uptake and utilization were mostly down-regulated in all digestive contents compared with artificial medium, but feo genes were over-expressed in rumen and small intestine compared with rectum. The five LEE operons were more expressed in rectum than in rumen content, and LEE1 was also more expressed in rectum than in small intestine content.ConclusionOur results highlight various strategies that EHEC may implement to survive in the gastrointestinal environment of cattle. These data could also help defining new targets to limit EHEC O157:H7 carriage and shedding by cattle.
Highlights
Enterohemorrhagic Escherichia coli (EHEC) are responsible for severe diseases in humans, and the ruminant digestive tract is considered as their main reservoir
Key events of EHEC pathogenesis in humans are associated to the ability of EHEC strains to adhere to intestinal epithelial cells and release Shiga toxins (Stx) which are essential for virulence [5, 6]
Physiochemical conditions of the digestive contents pH and short-chain fatty acid (SCFA) concentrations were measured in the media used for the growth of the E. coli reference strain EDL933 (rumen, small intestine, rectum contents and M9 minimal medium supplemented with glucose (M9-Glc)) (Table 1)
Summary
Enterohemorrhagic Escherichia coli (EHEC) are responsible for severe diseases in humans, and the ruminant digestive tract is considered as their main reservoir. Their excretion in bovine feces leads to the contamination of foods and the environment. The other major EHEC virulence factor is the Shiga toxin Stx. Once produced in the human gut by EHEC strains, the Stx toxins translocate across the intestinal epithelium, reach the bloodstream and their target endothelial cells, where they bind to the globotriaosylceramide-3 (Gb3) receptors. E. coli O104:H4 carry a Stx2-encoding prophage but, instead of the eae gene of typical EHEC, they produce aggregative adherence fimbria mediating a tight adherence to epithelial cells, and other EAEC specific virulence factors [9]. E. coli O104:H4 is probably an EAEC which has evolved by uptake of Stx phages [4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.