Abstract

BackgroundWild waterfowl, including ducks, represent the classic reservoir for low pathogenicity avian influenza (LPAI) viruses and play a major role in the worldwide dissemination of AIV. AIVs belonging to the hemagglutinin (H) 7 subtype are of epidemiological and economic importance due to their potential to mutate into a highly pathogenic form of the virus. Thus far, however, relatively little work has been conducted on elucidating the host-pathogen interactions of ducks and H7 LPAIVs. In the current study, three H7 LPAIVs isolated from either chicken, duck, or turkey avian species were evaluated for their comparative effect on the transcriptional innate immune response of ducks.ResultsThree H7 LPAIV isolates, chicken-origin (A/chicken/Maryland/MinhMa/2004), duck-origin (A/pintail/Minnesota/423/1999), and turkey-origin (A/turkey/Virginia/SEP-67/2002) were used to infect Pekin ducks. At 3 days post-infection, RNA from spleen tissue was used for transcriptional analysis using the Avian Innate Immune Microarray (AIIM) and quantitative real-time RT-PCR (qRT-PCR). Microarray analysis revealed that a core set of 61 genes was differentially regulated in response to all three LPAIVs. Furthermore, we observed 101, 135, and 628 differentially expressed genes unique to infection with the chicken-, duck-, or turkey-origin LPAIV isolates, respectively. qRT-PCR results revealed significant (p<0.05) induction of IL-1β, IL-2, and IFNγ transcription, with the greatest induction observed upon infection with the chicken-origin isolate. Several key innate immune pathways were activated in response to LPAIV infection including the toll-like receptor and RIG-I-like receptor pathways.ConclusionsPekin ducks elicit a unique innate immune response to different species-of-origin H7 LPAIV isolates. However, twelve identifiable genes and their associated cell signaling pathways (RIG-I, NOD, TLR) are differentially expressed regardless of isolate origin. This core set of genes are critical to the duck immune response to AI. These data provide insight into the potential mechanisms employed by ducks to tolerate AI viral infection.

Highlights

  • Wild waterfowl, including ducks, represent the classic reservoir for low pathogenicity avian influenza (LPAI) viruses and play a major role in the worldwide dissemination of avian influenza virus (AIV)

  • The experiments described were part of a larger study published by Spackman et al [3] in which the pathogenesis of 12 North American H7 low pathogenicity avian influenza (LPAIV) isolates were evaluated in three avian species: specific pathogen free (SPF) white leghorn chickens (Gallus gallus domesticus), broad breasted white turkeys (Meleagris galopova) and Pekin ducks (Anas platyrhynchos domesticus)

  • In conclusion, we have identified several immune pathways that are activated in response to LPAIV infection of ducks

Read more

Summary

Introduction

Wild waterfowl, including ducks, represent the classic reservoir for low pathogenicity avian influenza (LPAI) viruses and play a major role in the worldwide dissemination of AIV. Relatively little work has been conducted on elucidating the host-pathogen interactions of ducks and H7 LPAIVs. In the current study, three H7 LPAIVs isolated from either chicken, duck, or turkey avian species were evaluated for their comparative effect on the transcriptional innate immune response of ducks. The Spackman et al [3] study concluded that the severity of disease and the degree of virus shed relied on specific combinations of species and isolates They concluded that turkeys may be more susceptible to clinical disease from the H7 LPAI than either chickens or ducks. We utilized the AIIM to characterize the global host immune response of ducks to three H7 low pathogenicity avian influenza (LPAIV) isolates. The aim of this study was to evaluate the consequences of H7 LPAIV infection in ducks with viruses isolated from chickens, ducks, and turkeys

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call