Abstract
BackgroundCassava mosaic disease is caused by several distinct geminivirus species, including South African cassava mosaic virus-[South Africa:99] (SACMV). To date, there is limited gene regulation information on viral stress responses in cassava, and global transcriptome profiling in SACMV-infected cassava represents an important step towards understanding natural host responses to plant geminiviruses.ResultsA RNA-seq time course (12, 32 and 67 dpi) study, monitoring gene expression in SACMV-challenged susceptible (T200) and tolerant (TME3) cassava landraces, was performed using the Applied Biosystems (ABI) SOLiD next-generation sequencing platform. The multiplexed paired end sequencing run produced a total of 523 MB and 693 MB of paired-end reads for SACMV-infected susceptible and tolerant cDNA libraries, respectively. Of these, approximately 50.7% of the T200 reads and 55.06% of TME3 reads mapped to the cassava reference genome available in phytozome. Using a log2 fold cut-off (p <0.05), comparative analysis between the six normalized cDNA libraries showed that 4181 and 1008 transcripts in total were differentially expressed in T200 and TME3, respectively, across 12, 32 and 67 days post infection, compared to mock-inoculated. The number of responsive transcripts increased dramatically from 12 to 32 dpi in both cultivars, but in contrast, in T200 the levels did not change significantly at 67 dpi, while in TME3 they declined. GOslim functional groups illustrated that differentially expressed genes in T200 and TME3 were overrepresented in the cellular component category for stress-related genes, plasma membrane and nucleus. Alterations in the expression of other interesting genes such as transcription factors, resistance (R) genes, and histone/DNA methylation-associated genes, were observed. KEGG pathway analysis uncovered important altered metabolic pathways, including phenylpropanoid biosynthesis, sucrose and starch metabolism, and plant hormone signalling.ConclusionsMolecular mechanisms for TME3 tolerance are proposed, and differences in patterns and levels of transcriptome profiling between T200 and TME3 with susceptible and tolerant phenotypes, respectively, support the hypothesis that viruses rearrange their molecular interactions in adapting to hosts with different genetic backgrounds.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1006) contains supplementary material, which is available to authorized users.
Highlights
Cassava mosaic disease is caused by several distinct geminivirus species, including South African cassava mosaic virus-[South Africa:99] (SACMV)
That the induction of PD-associated genes in T200 is favouring cell-to-cell movement of the virus which has can be linked to the increase of SACMV titres observed at 32 and 67 dpi. This is the first virus-responsive transcriptome study in cassava following the infection of a cassava geminivirus over three time points post infection, and it will prove interesting to compare these results in future with cassava in response to other pathogens, such as the bacterial pathogen Xanthomonas axonopodis pv. manihotis [68,151]
Comparative transcriptome analyses of T200 and TME3 landraces revealed that many of the responses to SACMV infection were consistent with changes seen in other plants under biotic stress, but many were specific to the SACMVcassava interaction
Summary
Cassava mosaic disease is caused by several distinct geminivirus species, including South African cassava mosaic virus-[South Africa:99] (SACMV). There is limited gene regulation information on viral stress responses in cassava, and global transcriptome profiling in SACMV-infected cassava represents an important step towards understanding natural host responses to plant geminiviruses. Manihot esculenta Crantz, is a tropical crop that is important for food security and income generation for many poor farmers in several Asian and African countries. CMD is caused by whitefly-transmitted viruses of the genus Begomovirus (family Geminiviridae), including South African cassava mosaic virus-[South Africa:99] [NCBI-AF155806] (SACMV) [7]. The minus strand of DNA-A has four open reading frames (ORFs) that encode for the Rep associated protein (AC1), a transcriptional activator (TrAP/AC2), a replication enhancer (Ren/AC3), and the AC4 protein. The AC4 ORF lies entirely embedded within the coding region of the Rep protein, and it is the least conserved of all the geminiviral proteins, both in sequence and in function [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.