Abstract

The nucleotide cyclic di-GMP is a second messenger in bacteria that regulates a range of cellular functions including the virulence of pathogens. GGDEF is a protein domain involved in the synthesis of cyclic di-GMP. The genome of the crucifer pathogen Xanthomonas campestris pv. campestris (Xcc) encodes 21 proteins with a GGDEF domain. Clp, a homolog of the model transcription factor Crp of Escherichia coli, is a global regulator in Xcc. The aim of this study is to identify genes encoding GGDEF domain proteins whose expression is regulated by Clp. Results of reporter assay and RT-PCR analysis suggested that Clp regulates the expression of a set of genes encoding proteins harboring GGDEF domain. The transcription initiation site of XCC1294, one of the Clp regulated gene encoding a GGDEF domain protein, was mapped. Promoter analysis and gel retardation assay indicated that the transcription of XCC1294 is positively and directly regulated by Clp. Furthermore, transcription of XCC1294 was subject to catabolite repression and affected by several stress conditions. We also showed that mutation of XCC1294 results in enhanced surface attachment. In addition, transcription of three putative adhesin genes (xadA, fhaC, and yapH) was increased in the XCC1294 mutant. Taken together, the data presented here indicate that Clp positively regulates expression of XCC1294, and that XCC1294 serves a regulator of bacterial attachment and regulates different adhesin genes expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.