Abstract

The plant growth-promoting rhizobacterium Tsukamurella tyrosinosolvens P9 can improve peanut growth. In this study, a co-culture system of strain P9 and peanut was established to analyze the transcriptome of peanut roots interacting with P9 for 24 and 72 h. During the early stage of co-culturing, genes related to mitogen-activated protein kinase (MAPK) and Ca2+ signal transduction, ethylene synthesis, and cell wall pectin degradation were induced, and the up-regulation of phenylpropanoid derivative, flavonoid, and isoflavone synthesis enhanced the defense response of peanut. The enhanced expression of genes associated with photosynthesis and carbon fixation, circadian rhythm regulation, indoleacetic acid (IAA) synthesis, and cytokinin decomposition promoted root growth and development. At the late stage of co-culturing, ethylene synthesis was reduced, whereas Ca2+ signal transduction, isoquinoline alkaloid synthesis, and ascorbate and aldarate metabolism were up-regulated, thereby maintaining root ROS homeostasis. Sugar decomposition and oxidative phosphorylation and nitrogen and fatty acid metabolism were induced, and peanut growth was significantly promoted. Finally, the gene expression of seedlings inoculated with strain P9 exhibited temporal differences. The results of our study, which explored transcriptional alterations of peanut root during interacting with P9, provide a basis for elucidating the growth-promoting mechanism of this bacterial strain in peanut.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call