Abstract

Activity of transcription factors affect synthesis of G-protein coupled receptor 54 (GPR54), an important factor in regulation of initiation of puberty. Expression of the GPR54 gene in cattle is associated with polymorphisms in the proximal regulatory region (PRR) of the GPR54 gene. Transcription resulting in production of GPR54 mRNA transcript occurs as a result of transcription factor (TF) interactions in the PRR. Polymorphisms in the PRR may be associated with extent of activity of these TFs. Folliculogenesis-specific BHLH TF (FIGLA), neurogenin 2 (NEUROG2), and early growth response 1 (EGR1) are important in modulation of ovarian follicle development and neurons synthesizing GnRH, thus, regulating biosynthesis of luteinizing hormone. The aim of this study, therefore, was to assess the transcription-activating potential of binding sites for FIGLA, NEUROG2, and EGR1 TFs in the GPR54 promoter of cattle. Two luciferase-based promoters, ATC and CCT, which contain three single nucleotide polymorphisms (SNPs), A/C-794, T/C-663, and C/T-601, in the GPR54 PRR, were analyzed to evaluate gene expression and activation of different promoters by FIGLA, NEUROG2, and EGR1. The FIGLA induced GPR54 transcription through the CCT, whereas NEUROG2 and EGR1 induced GPR54 transcription through the ATC promoter-binding site. The CCT-activating effects of FIGLA were greater (2.56-fold) than the ATC-activating effects (P < 0.05). The ATC-activating effects of NEUROG2 and EGR1 were markedly greater (12.91- and 8.41-fold; P < 0.01) than CCT-activating effects. The polymorphisms, CCT and ATC, of the cattle GPR54 affect the activity of transcription factors, therefore, have an important effect on production of GPR54 mRNA transcript.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call