Abstract

UDP-glucuronosyltransferase UGT1A7 catalyzes the glucuronidation of benzo(a)pyrene metabolites and other bulky aromatic compounds. Both UGT1A7 mRNA and an associated enzyme activity (benzo(a)pyrene7, 8-dihydrodioltransferase activity) are markedly increased in livers of rats treated with beta-naphthoflavone or 4-methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (oltipraz). Nuclear runoff assays show that the effects of both inducers are primarily due to transcriptional activation. A 27-kilobase region that included the UGT1A7/UGT1A6 promoter regions was cloned. Primer extension and RNase protection studies indicated >/=30 transcription start sites in five clusters between bases -85 and -40 respective to the translation start codon. There was no recognizable TATA box, but the promoter region is TA-rich. Sequence analysis revealed potential binding sites for CCAAT enhancer-binding protein, activator protein 1, and hepatic nuclear factors 1, 3, and 4, but no xenobiotic response elements or antioxidant response elements, implicated in the regulation of other genes by beta-naphthoflavone or oltipraz, were found. A UGT1A7 gene reporter plasmid directed strong constitutive expression in transient transfection assays using primary rat hepatocytes. Treatment with 3-methylcholanthrene or oltipraz had no effect compared with similarly treated pGL3-Basic-transfected cells. These results suggest that the regulatory elements controlling xenobiotic inducibility of UGT1A7 transcription are located either 5' or 3' of bases -1600 to +54. One possibility is that the polycyclic aromatic-mediated regulation of UGT1A7 occurs via the xenobiotic response element flanking the UGT1A6 locus 7 kilobase pairs downstream.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.