Abstract

Cyanobacteria respond to nitrogen deprivation by changing cellular metabolism. Glycogen is accumulated within cells to assimilate excess carbon and energy during nitrogen starvation, and inhibition of glycogen synthesis results in impaired nitrogen response and decreased ability to survive. In spite of glycogen accumulation, genes related to glycogen catabolism are up-regulated by nitrogen deprivation. In this study, we found that glycogen catabolism was also involved in acclimation to nitrogen deprivation in the cyanobacterium Synechococcus sp. PCC 7002. The glgP2 gene, encoding glycogen phosphorylase, was induced by nitrogen deprivation, and its expression was regulated by the nitrogen-regulated response regulator A (NrrA), which is a highly conserved transcriptional regulator in cyanobacteria. Activation of glycogen phosphorylase under nitrogen-deprived conditions was abolished by disruption of the nrrA gene, and survival of the nrrA mutant declined. In addition, a glgP2 mutant was highly susceptible to nitrogen starvation. NrrA also regulated expression of the tal-zwf-opcA operon, encoding enzymes of the oxidative pentose phosphate (OPP) pathway, and inactivation of glucose-6-phosphate dehydrogenase, the first enzyme of the OPP pathway, decreased the ability to survive under nitrogen starvation. It was concluded that NrrA facilitates cell survival by activating glycogen degradation and the OPP pathway under nitrogen-deprived conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call