Abstract
Partial cellular reprogramming via transient expression of Oct4, Sox2, Klf4, and c-Myc induces rejuvenation and reduces aged-cell phenotypes. In this study, we found that transcriptional activation of the endogenous Oct4 gene by using the CRISPR/dCas9 activator system can efficiently ameliorate hallmarks of aging in a mouse model of Hutchinson-Gilford progeria syndrome (HGPS). We observed that the dCas9-Oct4 activator induced epigenetic remodeling, as evidenced by increased H3K9me3 and decreased H4K20me3 levels, without tumorization. Moreover, the progerin accumulation in HGPS aorta was significantly suppressed by the dCas9 activator-mediated Oct4 induction. Importantly, CRISPR/dCas9-activated Oct4 expression rescued the HGPS-associated vascular pathological features and lifespan shortening in the mouse model. These results suggest that partial rejuvenation via CRISPR/dCas9-mediated Oct4 activation can be used as a novel strategy in treating geriatric diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.