Abstract

Treatment of MCF-7 human breast cancer cells with 17beta-estradiol (E(2)) results in increased DNA synthesis and cell proliferation and enhanced enzyme activities associated with purine/pyrimidine biosynthesis. The mechanism of enhanced DNA polymerase alpha activity was investigated by analysis of the promoter region of this gene. E(2) induced luciferase (reporter gene) activity in MCF-7 cells transfected with pDNAP1, pDNAP2, and pDNAP3 containing -1515 to +45, -248 to +45 and -116 to +45 inserts from the DNA polymerase alpha gene promoter, whereas no induction was observed with pDNAP4 (-65 to +45 insert). The induction response was dependent on cotransfection with estrogen receptor alpha (ER(alpha)), and transactivation was also observed with a mutant ER(alpha) that did not express the DNA-binding domain. Subsequent functional, DNA binding, and DNA footprinting studies showed that a GC-rich region at -106 to -100 was required for E(2)-mediated transactivation, and Sp1 protein, but not ER(alpha), bound this sequence. Transcriptional activation of DNA polymerase alpha by E(2) is associated with ER(alpha)/Sp1 action at a proximal GC-rich promoter sequence, and this gene is among a growing list of E(2)-responsive genes that are induced via ER(alpha)/Sp1 protein interactions that do not require direct binding of the hormone receptor to DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call