Abstract

Hypertriglyceridemia and fatty liver are common in patients with type 2 diabetes, but the factors connecting alterations in glucose metabolism with plasma and liver lipid metabolism remain unclear. Apolipoprotein CIII (apoCIII), a regulator of hepatic and plasma triglyceride metabolism, is elevated in type 2 diabetes. In this study, we analyzed whether apoCIII is affected by altered glucose metabolism. Liver-specific insulin receptor-deficient mice display lower hepatic apoCIII mRNA levels than controls, suggesting that factors other than insulin regulate apoCIII in vivo. Glucose induces apoCIII transcription in primary rat hepatocytes and immortalized human hepatocytes via a mechanism involving the transcription factors carbohydrate response element-binding protein and hepatocyte nuclear factor-4α. ApoCIII induction by glucose is blunted by treatment with agonists of farnesoid X receptor and peroxisome proliferator-activated receptor-α but not liver X receptor, ie, nuclear receptors controlling triglyceride metabolism. Moreover, in obese humans, plasma apoCIII protein correlates more closely with plasma fasting glucose and glucose excursion after oral glucose load than with insulin. Glucose induces apoCIII transcription, which may represent a mechanism linking hyperglycemia, hypertriglyceridemia, and cardiovascular disease in type 2 diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.