Abstract
The p53 tumor suppressor limits cellular proliferation by inducing either G1 arrest or apoptosis, depending on the cellular context. To determine if these pathways are mechanistically distinct, we have examined the effects of different p53 mutants in p53 null primary mouse embryo fibroblasts. We chose this system as it is highly physiological and ensures that the interpretation of the results will not be confounded by the presence of endogenous p53 or oncoproteins which target p53. Using single cell microinjection assays for both G1 arrest and apoptosis, with loss-of-function and chimeric gain-of-function mutants, we have demonstrated that transcriptional activation is critical for both processes. Replacement of the p53 activation domain with that of VP16, or replacement of the p53 oligomerization domain with that of GCN4, reconstituted both G1 arrest and apoptosis activities. However, despite the importance of transcriptional activation in both processes, the target gene requirements are different. The p21 cyclin-dependent kinase inhibitor, which has been shown to be a direct target of p53 and a component of the radiation-induced G1 arrest response, is dispensable for oncogene-induced apoptosis, suggesting that these two p53-dependent transcriptional pathways are distinct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.