Abstract

Well-diffracting crystals are essential to obtain relevant structural data that will lead to understanding of RNA Polymerase II (Pol II) transcriptional processes at a molecular level. Here we present a strategy to study Pol II crystals using negative stain transmission electron microscopy (TEM) and a methodology to optimize radiation damage free data collection using free electron laser (FEL) at the Linac Coherent Light Source (LCLS). The use of negative stain TEM allowed visualization and optimization of crystal diffraction by monitoring the lattice quality of crystallization conditions. Nano crystals bearing perfect lattices were seeded and used to grow larger crystals for FEL data collection. Moreover, the use of in house designed crystal loops together with ultra-violet (UV) microscopy for crystal detection facilitated data collection. Such strategy permitted collection of multiple crystals of radiation-free-damage data, resulting in the highest resolution of wild type (WT) Pol II crystals ever observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.