Abstract

Replication-independent histone variant H3.3 is incorporated into distinct genomic regions including promoters. However topology of promoter-associated H3.3 in relation to chromatin modifications and transcriptional outcome is not known, providing no insight on any distinction between H3.3-containing active and inactive promoters. Here, we report algorithms providing information on gene expression status as a function of density and position of multiple chromatin marks on promoters. We identify a relationship between promoter enrichment in epitope-tagged H3.3 or its canonical isoform H3.2 and corresponding transcriptional outcomes, as a function of sub-promoter positioning of DNA methylation and H3K4me3, H3K9me3 and H3K27me3. We identify a low-frequency configuration of H3.3 and H3K9me3 co-occupancy associated with transcriptional activity, while H3.3 and H3K27me3 promoters are invariably inactive. We unveil H3.3 and DNA methylated promoters whose transcription outcome depends on H3.3 sub-promoter positioning. Our results indicate how spatially restricted positioning of H3.3 may add another layer of transcription regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.