Abstract

Resistance to beta-lactam antibiotics in staphylococci is mediated by mecA and blaZ, genes encoding a penicillin-binding protein (PBP2a) with low beta-lactam affinity and beta-lactamase, respectively. The mec and bla regulators, mecR1-mecI and blaR1-blaI, respectively, encode inducer-repressors with sufficient amino acid homology to suggest that they could coregulate PBP2a production. In order to test this hypothesis, plasmids containing mec and bla regulatory sequences were introduced into Staphylococcus aureus containing a chromosomal mecA-lacZ transcriptional fusion. Corepression was confirmed by demonstrating a gene dosage-dependent reduction in beta-galactosidase activity by either MecI or BlaI and additive repression when both were present. Both MecI-MecI and BlaI-BlaI homodimer and MecI-BlaI heterodimer interactions were demonstrated in the yeast two-hybrid assay, and purified MecI and BlaI protected the same mec promoter-operator sequences. However, MecI was approximately threefold more effective at mecA-lacZ transcriptional repression than was BlaI. While MecI and BlaI displayed similar activity as repressors of mecA transcription, there was a marked difference between MecR1 and BlaR1 in the rate and specificity of induction. Induction through BlaR1 by a beta-lactam was 10-fold greater than through MecR1 at 60 min and was 81% of maximal by 2 h, while induction through MecR1 never exceeded 20% of maximal. Furthermore, complementation studies showed that MecI- or BlaI-mediated mecA transcriptional repression could be relieved by induction through homologous but not heterologous sensor-inducer proteins, demonstrating the repressor specificity of induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.