Abstract

In Pseudomonas putida carrying the CAM plasmid, the operon (camDCAB) encoding enzymes involved in the degradation pathway of D-camphor is negatively regulated by the CamR protein, and camR is autorepressed. S1 nuclease mapping revealed that camDCAB and camR were divergently transcribed from overlapping promoters, the transcription start sites were separated by 11 bp, and transcriptions of the cam operon (camDCAB) and camR increased about 10- and 4-fold, respectively, immediately after addition of camphor. The transcriptions of camDCAB and camR were negatively regulated through the interaction of the CamR protein with the one operator located in the overlapping promoter region. In vitro transcription experiments were performed to characterize the regulation of cam genes. The camR promoter was initiated by P. putida RNA polymerase containing sigma 70, but transcription from the camDCAB promoter by sigma 70 holoenzyme was not observed. The purified CamR protein repressed in vitro transcription from the camR promoter. This repression was suppressed by camphor. The RNA polymerase binding region of the camR promoter was identified by using DNase I footprinting. In addition, footprinting studies revealed that the CamR protein and RNA polymerase coexisted on the promoter region in a joint nonproductive complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.