Abstract
Repeat sequences are transcribed in the germinal vesicles of amphibian oocytes. In the hnRNA population both complements of the repeats are found and can be readily detected because they form intermolecular duplex structures. The structure and formation of duplex regions have been studied in the hnRNA of Xenopus laevis, Triturus cristatus, Amphiuma means and Necturus maculosus, a series of amphibians of increasing genome size (C-value). In T. cristatus, the duplex structures are mostly 600-1200 bp in length, whereas in X. laevis they are shorter and in N. maculosus they tend to be longer. Although the proportion of RNA sequence capable of rapidly forming duplex structures is different in different organisms, this property bears no relationship to C-value. However the sequence complexity of complementary repeats, as estimated from the rate of duplex formation, does show an increasing trend with C-value. The complementary repeats found in oocyte hnRNA are transcribed from families of DNA sequence that are each represented in the genome by thousands of copies. The extent of cross-species hybridization is low, indicating that the repeat sequences transcribed in different amphibian genera are not the same. In situ hybridization experiments indicate that the repeat sequences are spread throughout the genome. The evolution and possible function of complementary repeats are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.