Abstract

Streptococcus mutans, the primary causative agent of human dental caries, contains a single copy of the gene encoding ClpP, the chief intracellular protease responsible for tolerance to various environmental stresses. To better understand the role of ClpP in stress response, we investigated the regulation of clpP expression in S. mutans. Using semiquantitative reverse transcription-PCR analysis, we observed that, under nonstressed conditions, clpP expression is somewhat constant throughout the growth phases, although it gradually decreases as cells enter the late stationary phase. The half-life of the clpP transcript was found to be less than 1 minute. Sequence analysis of the clpP locus reveals the presence of a 50-bp tandem repeat sequence located immediately upstream of the clpP promoter (PclpP). PCR and DNA sequence analyses suggest that the number of tandem repeat units can vary from as few as two to as many as nine, depending on the particular S. mutans isolate. Further analysis, using a transcriptional reporter fusion consisting of PclpP fused to a promoterless gusA gene, indicates that the presence of the repeat sequence region within PclpP results in an approximately fivefold increase in expression from PclpP compared to the repeat-free transcriptional reporter fusion. CtsR, a transcriptional repressor that negatively regulates clpP expression, has no effect on this repeat-mediated induction of clpP transcription. Furthermore, the repeat sequence is not necessary for the induction of clpP under stress conditions. Database searches indicate that the region containing the tandem repeats is absent in the clpP loci in other bacteria, including other closely related Streptococcus spp., suggesting that the repeat sequences are specific for the induction of clpP expression in S. mutans. We speculate that a host-specific transcriptional activator might be involved in the upregulation of clpP expression in S. mutans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.