Abstract

Recent studies report that long-term memory retrieval can induce memory reconsolidation, and impairment of this reconsolidation might lead to amnesia. Previously, we found that reconsolidation of a conditioned food aversion memory could be disrupted by translation inhibitors for up to 3h following a reconsolidation event, thus inducing amnesia. We examined the role of transcription processes in the induction of amnesia in the land snail, Helix lucorum. It received N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and transcription inhibitor 2days after learning in a neutral context environment; it was then transferred to the learning context followed by reminder with conditioned food stimulus. NMDA receptor blockade, followed by a reminder session, impaired reconsolidation of an aversive memory. Simultaneous administration of an NMDA receptor antagonist and a transcription inhibitor prior to reminder of an aversive event prevented amnesia induction. In contrast, when a transcription inhibitor alone was injected prior to a reminder session, the blockade had no effect on memory. We found that transcription inhibition 0-6h after amnesia induction suppressed memory loss, but this suppression was lost when inhibitors were administered 9h after amnesia. Thus, amnesia is likely dependent on transcription processes within a 9-h time window. We can hypothesize that amnesia induction initiates synthesis of specific mRNAs and proteins; furthermore, these events occur within specific time-dependent windows. Our findings could prove useful for the analysis of amnesia formation and for the development of possible ways to prevent memory loss associated with various diseases and injuries in animals and humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call