Abstract

The post-translational modification of histones and the incorporation of core histone variants play key roles in governing gene expression. Many eukaryotic genes regulate their expression by limiting the escape of RNA polymerase from promoter-proximal pause sites. Here we report that elongating RNA polymerase II complexes encounter distinct chromatin landscapes that are marked by methylation of lysine residues Lys(4), Lys(79), and Lys(36) of histone H3. However, neither histone methylation nor acetylation directly regulates the release of elongation complexes stalled at promoter-proximal pause sites of the c-myc gene. In contrast, transcriptional activation is associated with local displacement of the histone variant H2A.Z within the transcribed region and incorporation of the major histone variant H2A. This result indicates that transcribing RNA polymerase II remodels chromatin in part through coincident displacement of H2A.Z-H2B dimers and incorporation of H2A-H2B dimers. In combination, these results suggest a new model in which the incorporation of H2A.Z into nucleosomes down-regulates transcription; at the same time it may act as a cellular memory for transcriptionally poised gene domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.