Abstract

Glandular trichomes are universal epidermal structures that produce abundant specialized metabolites. However, knowledge of the initiation of glandular heads in glandular trichomes is limited. Herein, we found an intrinsic link of morphogenesis between glandular trichomes and non-glandular trichomes. Two novel homeodomain leucine zipper II members in tobacco (Nicotiana tabacum), NtHD9 and NtHD12, played important roles in long glandular trichome formation: NtHD9 was responsible for glandular head formation, while NtHD12 simultaneously controlled the formation of stalks and glandular heads. DAP-seq analysis suggested that NtHD9 can bind to the KKGCATTWAWTR motif of the cytochromes P450 94C1 (NtCYP94C1) promoter, which is involved in jasmonoyl-isoleucine oxidation. RNA-seq analysis of non-transformed tobacco and nthd9 plants revealed that NtHD9 modulates the expression of jasmonate (JA) signaling- and six trichome development-related genes. Notably, MeJA treatment restored the morphogenesis of long glandular trichomes in nthd9 and nthd12 plants, and the size of glandular heads increased with increasing MeJA concentration. However, the phenotype of long glandular trichome absence in double mutants of NtHD9 and NtHD12 could not be restored by MeJA. Our data demonstrate that NtHD9 and NtHD12 have distinct major functions yet overlapping roles in long glandular trichome formation via JA signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.