Abstract

The cardiac transcription factors Csx/Nkx2.5 and GATA4 play important roles in vertebrate heart development. Although mutations of Csx/Nkx2.5 or GATA4 are associated with various congenital heart diseases, their mechanism of action on cardiomyocyte function is not completely elucidated. In this study, we therefore investigated the actions of these transcription factors on the electrophysiological features and expression of ion channels in cardiomyocytes. Genes for transcription factors Csx/Nkx2.5 and GATA4 were transfected into rat neonatal cardiomyocytes by adenoviral infection. Action potentials, L-, T-type Ca 2+ channels and hyperpolarization-activated cation current ( I h) of rat neonatal myocytes were recorded by patch clamp technique after adenoviral infection. Expression of ion channels was confirmed by real-time PCR. In Csx/Nkx2.5 overexpression myocytes, the spontaneous beating rate was markedly increased with an up-regulation of the Ca v3.2 T-type Ca 2+ channel, while in GATA4 overexpression myocytes, the T-type Ca 2+ channel was unchanged. On the other hand, the L-type Ca 2+ channel was down-regulated by both Csx/Nkx2.5 and GATA4 overexpression; the level of Ca v1.3 mRNA was dramatically decreased by Csx/Nkx2.5 overexpression. These results indicate that Csx/Nkx2.5 and GATA4 play important roles on the generation of pacemaker potentials modulating voltage-dependent Ca 2+ channels in the neonatal cardiomyocyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.