Abstract

DNA methylation is a decisive regulator of gene expression. Differentially methylated promoters were described in rheumatoid arthritis (RA), but we do not know how these epimutations can trigger a proinflammatory cytokine milieu. B cell-focused DNA methylome studies identified a group of genes that had undergone disease-associated changes in a murine model of RA. An arthritis-specific epimutation (hypomethylation) was detected in the promoter region of the Zbtb38 gene, which encodes a transcriptional repressor. Gene expression studies revealed that hypomethylation of the Zbtb38 promoter was accompanied by disease-specific repressor expression, and two anti-inflammatory factors interleukin 1 receptor 2 gene (IL1r2) and interleukin-1 receptor antagonist (IL1rn) were among the downregulated genes. We hypothesized that Zbtb38 repressor could induce downregulated expression of these anti-inflammatory genes and that this could significantly contribute to arthritis pathogenesis. Our studies demonstrate that Zbtb38 forms a molecular bridge between an arthritis-associated epimutation (DNA hypomethylation in Zbtb38 promoter) and transcriptional silencing of the IL1r2 gene in B cells. In this way, disease-associated DNA hypomethylation can support autoimmune arthritis by interfering with an anti-inflammatory pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.