Abstract

Integration of inputs by a neuron depends on dendritic arborization patterns. In mammals, the genetic programs that regulate dynamic remodeling of dendrites during development and in response to activity are incompletely understood. Here we report that knockdown of the transcription factor Sp4 led to an increased number of highly branched dendrites during maturation of cerebellar granule neurons in dissociated cultures and in cerebellar cortex. Time-course analysis revealed that depletion of Sp4 led to persistent generation of dendritic branches and a failure in resorption of transient dendrites. Depolarization induced a reduction in the number of dendrites, and knockdown of Sp4 blocked depolarization-induced remodeling. Furthermore, overexpression of Sp4 wild type, but not a mutant lacking the DNA-binding domain, was sufficient to promote dendritic pruning in nondepolarizing conditions. These findings indicate that the transcription factor Sp4 controls dendritic patterning during cerebellar development by limiting branch formation and promoting activity-dependent pruning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.