Abstract

Genomic mutations allow bacteria to adapt rapidly to adverse stress environments. The three-dimensional conformation of the genome may also play an important role in transcriptional regulation and environmental adaptation. Here, using chromosome conformation capture, we investigate the high-order architecture of the Zymomonas mobilis chromosome in response to genomic mutation and ambient stimuli (acetic acid and furfural, derived from lignocellulosic hydrolysate). We find that genomic mutation only influences the local chromosome contacts, whereas stress of acetic acid and furfural restrict the long-range contacts and significantly change the chromosome organization at domain scales. Further deciphering the domain feature unveils the important transcription factors, Ferric uptake regulator (Fur) proteins, which act as nucleoid-associated proteins to promote long-range (>200 kb) chromosomal communications and regulate the expression of genes involved in stress response. Our work suggests that ubiquitous transcription factors in prokaryotes mediate chromosome organization and regulate stress-resistance genes in bacterial adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.