Abstract

Steadily growing demands for identification and quantification of cellular metabolites in higher throughput have brought a need for new analytical technologies. Here, we developed a synthetic biological sensor system for quantifying metabolites from biological cell samples. For this, bacterial transcription factors were exploited, which bind to or dissociate from regulatory DNA elements in response to physiological changes in the cellular metabolite concentration range. Representatively, the bacterial pyruvate dehydrogenase (PdhR), trehalose (TreR), and l-arginine (ArgR) repressor proteins were functionalized to detect pyruvate, trehalose-6-phosphate (T6P), and arginine concentration in solution. For each transcription factor the mutual binding behavior between metabolite and DNA, their working range, and othogonality were determined. High-throughput, parallel processing, and automation were achieved through integration of the metabolic sensor system on a microfluidic large-scale integration (mLSI) chip platform. To demonstrate the functionality of the integrated metabolic sensor system, we measured diurnal concentration changes of pyruvate and the plant signaling molecule T6P within cell etxracts of Arabidopsis thaliana rosettes. The transcription factor sensor system is of generic nature and extendable on the microfluidic chip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call