Abstract

α-Farnesene is a sesquiterpene present in plants. It was first discovered in apples. It plays an important role in the plant defence response and is considered a key factor in the occurrence of superficial scald. The gene encoding α-farnesene synthase, which is the last key enzyme in the biosynthetic pathway of α-farnesene in apple fruit, hasbecome the primary target enzyme for controlling the genetic manipulation of α-farnesene biosynthesis. In this study, the yeast one-hybrid assay and the dual luciferase assay were used to ascertain the relationship between MdLSD1 and MdAFS. Real-time PCR was used to analyse the molecular mechanism underlying the regulation of MdAFS by MdLSD1. Our results revealed that transcription factor MdLSD1, which is closely related to programmed cell death in apple fruit tissues, binds to MdAFS. Transient transformation of apple skin with vectors overexpressing MdLSD1 showed that the gene negatively regulates MdAFS. Overall, we suggest that MdLSD1 negatively regulates MdAFS. Our results are of great significance for future research on the transcriptional regulation of the α-farnesene synthase gene and provide a new direction for exploring the specific mechanism of programmed cell death involved in superficial-scald incidence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call