Abstract

A series of changes occur in the early embryo that are critical for subsequent development, and the pig is an excellent animal model of human disease, so understanding the regulatory mechanisms of early embryonic development in the pig is of very importance. To find key transcription factors regulating pig early embryonic development, we first profiled the transcriptome of pig early embryos, and confirmed that zygotic gene activation (ZGA) in porcine embryos starts from 4 cell stage. Subsequent enrichment analysis of up-regulated gene motifs during ZGA revealed that the transcription factor ELK1 ranked first. The expression pattern of ELK1 in porcine early embryos was analyzed by immunofluorescence staining and qPCR, and the results showed that the transcript level of ELK1 reached the highest at the 8 cell stage, while the protein level reached the highest at 4 cell stage. To further investigate the effect of ELK1 on early embryo development in pigs, we silenced ELK1 in zygotes and showed that ELK1 silencing significantly reduced cleavage rate, blastocyst rate as well as blastocyst quality. A significant decrease in the expression of the pluripotency gene Oct4 was also observed in blastocysts from the ELK1 silenced group by immunofluorescence staining. Silencing of ELK1 also resulted in decreased H3K9Ac modification and increased H3K9me3 modification at 4 cell stage. To investigate the effect of ELK1 on ZGA, we analyzed transcriptome changes in 4 cell embryos after ELK1 silencing by RNA seq, which revealed that ELK1 silencing resulted in significant differences in the expression of a total of 1953 genes at the 4 cell stage compared with their normal counterparts, including 1106 genes that were significantly upregulated and 847 genes that were significantly downregulated. Through GO and KEGG enrichment, we found that the functions and pathways of down-regulated genes were concentrated in protein synthesis, processing, cell cycle regulation, etc., while the functions of up-regulated genes were focused on aerobic respiration process. In conclusion, this study demonstrates that the transcription factor ELK1 plays an important role in regulation of preimplantation embryo development of pigs and deficiency of ELK1 leads to abnormal epigenetic reprogramming as well as zygotic genome activation, thus adversely affecting embryonic development. This study will provide important reference for the regulation of transcription factors in porcine embryo development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call