Abstract

The oil palm (Elaeis guineensis) is emerging as the world's most important and prolific oilseed crop, celebrated for its impressive oil yield. However, the molecular intricacies that govern lipid metabolism and fatty acid accumulation in oil palm fruits remain relatively underexplored. This study reveals a significant correlation between the expression of EgGRP2A, a transcription factor, and the expression of EgFATA in the oil palm. Yeast one-hybrid analysis and electrophoretic mobility shift assays (EMSA) reveal and confirm the binding interactions between EgGRP2A and the promoter region of EgFATA. Subsequent experiments in oil palm protoplasts show that transient overexpression of EgGRP2A leads to a marked upregulation of EgFATA expression. Conversely, downregulation of EgGRP2A in transgenic oil palm embryoids leads to a significant reduction in EgFATA expression. Metabolite profiling in the transgenic embryoids reveals a significant reduction in unsaturated fatty acids, particularly oleic acid. These findings promise profound insights into the regulatory orchestration of EgFATA and the synthesis of fatty acids, particularly oleic acid, in the oil palm. Furthermore, the results lay the foundation for future breeding and genetic improvement efforts aimed at increasing oleic acid content in oil palm varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.