Abstract

BackgroundArginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus. An increase in plasma osmolality stimulates secretion of AVP to blood circulation and induces AVP synthesis in these nuclei. Although studies on mechanism of AVP transcriptional regulation in hypothalamus proposed that cAMP and glucocorticoids positively and negatively regulate Avp expression, respectively, the molecular mechanisms have remained elusive. Recently, we identified CREB3L1 (cAMP-responsive element binding protein 3 like 1) as a putative transcription factor of Avp transcription in the rat hypothalamus. However the mechanism of how CREB3L1 is regulated in response of hyperosmotic stress in the neurons of hypothalamus has never been reported. This study aims to investigate effect of previously reported regulators (cAMP and glucocorticoid) of Avp transcription on transcription factor CREB3L1 in order to establish a molecular explanation for cAMP and glucocorticoids effect on AVP expression.ResultsThe effect of cAMP and glucocorticoid treatment on Creb3l1 was investigated in both AtT20 cells and hypothalamic organotypic cultures. The expression of Creb3l1 was increased in both mRNA and protein level by treatment with forskolin, which raises intracellular cAMP levels. Activation of cAMP by forskolin also increased Avp promoter activity in AtT20 cells and this effect was blunted by shRNA mediated silencing of Creb3l1. The forskolin induced increase in Creb3l1 expression was diminished by combined treatment with dexamethasone, and, in vivo, intraperitoneal dexamethasone injection blunted the increase in Creb3l1 and Avp expression induced by hyperosmotic stress.ConclusionHere we shows that cAMP and glucocorticoid positively and negatively regulate Creb3l1 expression in the rat hypothalamus, respectively, and regulation of cAMP on AVP expression is mediated through CREB3L1. This data provides the connection between CREB3L1, a newly identified transcription factor of AVP expression, with the previously proposed mechanism of Avp transcription which extends our understanding in transcription regulation of Avp in the hypothalamus.

Highlights

  • Arginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus

  • We performed immunoblotting on fractionated cytosolic and nuclear extracts of AtT20 cells treated with FSK for 24 h (Fig. 1c)

  • An increase of both forms of CREB3L1 was observed in the cytosolic portion of FSK-treated cells, with the cleaved form being majorly increased in the nuclear fraction

Read more

Summary

Introduction

Arginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus. We identified CREB3L1 (cAMP-responsive element binding protein 3 like 1) as a putative transcription factor of Avp transcription in the rat hypothalamus. An increase of plasma osmolality activates secretion of AVP into the blood circulation to control water re-absorption at the kidney [4]. The in vitro analysis of the rat Avp promoter in the human choriocarcinoma cell line JEG-3 identified two cAMP responsive element (CRE)-sites (−227/-220 and −123/-116), and the expression of a dominant negative form of CREB decreased Avp promoter activity, suggesting that the CREB protein regulates Avp transcription [10]. A role for the immediate early gene Fos/Jun transcription factor family in Avp transcription has been proposed through binding to an activator protein 1 (AP1) regulatory sequence in the Avp promoter [12,13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call