Abstract
Controlling the gene expression is the most important development in a living organism, which makes it easier to find different kinds of diseases and their causes. It's very difficult to know what factors control the gene expression. Transcription Factor (TF) is a protein that plays an important role in gene expression. Discovering the transcription factor has immense biological significance, however, it is challenging to develop novel techniques and evaluation for regulatory developments in biological structures. In this research, we mainly focus on 'sequence specificities' that can be ascertained from experimental data with 'deep learning' techniques, which offer a scalable, flexible and unified computational approach for predicting transcription factor binding. Specifically, Multiple Expression motifs for Motif Elicitation (MEME) technique with Convolution Neural Network (CNN) named as CnNet, has been used for discovering the 'sequence specificities' of DNA gene sequences dataset. This process involves two steps: a) discovering the motifs that are capable of identifying useful TF binding site by using MEME technique, and b) computing a score indicating the likelihood of a given sequence being a useful binding site by using CNN technique. The proposed CnNet approach predicts the TF binding score with much better accuracy compared to existing approaches. The source code and datasets used in this work are available at https://github.com/masoodbai/CnNet-Approach-for-TFBS.git.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.