Abstract

Suppressor of cytokine signaling 3 (SOCS3) is highly expressed in mice with renal ischemia/reperfusion (RI/R) injury and has the potential to regulate mitophagy. On this basis, this study further investigates the possible mechanism via which SOCS3 affects RI/R by regulating mitophagy. After establishing a RI/R injury mouse model and a hypoxia/reoxygenation (H/R) cell model, the effects of silenced SOCS3 on injury and mitophagy in the above models were analyzed by ELISA, quantitative real-time polymerase chain reaction, Western blot, pathological sections, CCK-8 assay, flow cytometry, and JC-1 assay. Mechanistic studies were carried out with the help of database analysis and binding validation experiments (chromatin immunoprecipitation, dual-luciferase reporter assay, and co-immunoprecipitation). After the binding target was identified, the regulatory relationship between the target gene and SOCS3 was verified by rescue experiments. The large increase in blood urea nitrogen (BUN) and creatinine (Cr) levels verified the success of the RI/R model. SOCS3 expression was up-regulated in RI/R mice. Silenced SOCS3 alleviated kidney damage and mitochondrial abnormalities in RI/R mice and inhibited mitophagy at the molecular level. Likewise, silenced SOCS3 alleviated H/R-induced cell damage and mitophagy. Finally, activating transcription factor 3 (ATF3) was determined to bind to the promoter of SOCS3, which interacted with insulin-like growth factor 1 receptor (IGF1R). Rescue experiments confirmed the effect of ATF3 on SOCS3 expression and the underlying regulatory mechanism. ATF3 mediates SOCS3 expression to promote the activation of mitophagy, thereby aggravating renal ischemia-reperfusion injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call