Abstract

The AP-2δ transcription factor is restricted to a subset of retinal ganglion cells. Overexpression of AP-2δ in chick retina results in induction of polysialylated neural cell adhesion molecule (PSA-NCAM) accompanied by misrouting and bundling of ganglion cell axons. Two polysialyltransferases, ST8SIA2 and ST8SIA4, are responsible for polysialylation of NCAM. Here, we investigate the mechanism driving the increase in PSA-NCAM observed upon AP-2δ overexpression. We show that ST8SIA2 is induced by AP-2δ overexpression in chick retina. We use chromatin immunoprecipitation and gel shift assays to demonstrate direct interaction between AP-2δ and the ST8SIA2 promoter. We propose that up-regulation of ST8SIA2 upon AP-2δ overexpression in retina increases ectopic polysialylation of NCAM which in turn causes premature bundling of axons and alters axonal response to guidance cues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call