Abstract

BackgroundSalt stress significantly influences plant growth and reduces crop yield. It is highly anticipated to develop salt-tolerant crops with salt tolerance genes and transgenic technology. Hence, it is critical to identify salt tolerance genes that can be used to improve crop salt tolerance.ResultsWe report that the transcription elongation factor suppressor of Ty 4-2 (SPT4-2) is a positive modulator of salt tolerance in Arabidopsis thaliana. AtSPT4-2 expression is induced by salt stress. Knockout mutants of AtSPT4-2 display a salt-sensitive phenotype, whereas AtSPT4-2 overexpression lines exhibit enhanced salt tolerance. Comparative transcriptomic analyses revealed that AtSPT4-2 may orchestrate the expression of genes associated with salt tolerance, including stress-responsive markers, protein kinases and phosphatases, salt-responsive transcription factors and those maintaining ion homeostasis, suggesting that AtSPT4-2 improves salt tolerance mainly by maintaining ion homeostasis and enhancing stress tolerance.ConclusionsAtSPT4-2 positively modulates salt tolerance by maintaining ion homeostasis and regulating stress-responsive genes and serves as a candidate for the improvement of crop salt tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call