Abstract

In Drosophila melanogaster, dosage compensation relies on the targeting of the male-specific lethal (MSL) complex to hundreds of sites along the male X chromosome. Transcription-coupled methylation of histone H3 lysine 36 is enriched toward the 3' end of active genes, similar to the MSL proteins. Here, we have studied the link between histone H3 methylation and MSL complex targeting using RNA interference and chromatin immunoprecipitation. We show that trimethylation of histone H3 at lysine 36 (H3K36me3) relies on the histone methyltransferase Hypb and is localized promoter distal at dosage-compensated genes, similar to active genes on autosomes. However, H3K36me3 has an X-specific function, as reduction specifically decreases acetylation of histone H4 lysine 16 on the male X chromosome. This hypoacetylation is caused by compromised MSL binding and results in a failure to increase expression twofold. Thus, H3K36me3 marks the body of all active genes yet is utilized in a chromosome-specific manner to enhance histone acetylation at sites of dosage compensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.