Abstract
Chronic ACTH exposure is associated with adrenal hypertrophy and steroidogenesis. The underlying molecular processes in mice have been analysed by microarray, histological and immunohistochemical techniques. Synacthen infused for 2 weeks markedly increased adrenal mass and plasma corticosterone levels. Microarray analysis found greater than 2-fold changes in expression of 928 genes (P < 0.001; 397 up, 531 down). These clustered in pathways involved in signalling, sterol/lipid metabolism, cell proliferation/hypertrophy and apoptosis. Signalling genes included some implicated in adrenal adenomas but also upregulated genes associated with cyclic AMP and downregulated genes associated with aldosterone synthesis. Sterol metabolism genes were those promoting cholesterol supply (Scarb1, Sqle, Apoa1) and disposal (Cyp27a1, Cyp7b1). Oil red O staining showed lipid depletion consistent with reduced expression of genes involved in lipid synthesis. Genes involved in steroidogenesis (Star, Cyp11a1, Cyp11b1) were modestly affected (P < 0.05; <1.3-fold). Increased Ki67, Ccna2, Ccnb2 and Tk1 expression complemented immunohistochemical evidence of a 3-fold change in cell proliferation. Growth arrest genes, Cdkn1a and Cdkn1c, which are known to be active in hypertrophied cells, were increased >4-fold and cross-sectional area of fasciculata cells was 2-fold greater. In contrast, genes associated with apoptosis (eg Casp12, Clu,) were downregulated and apoptotic cells (Tunel staining) were fewer (P < 0.001) and more widely distributed throughout the cortex. In summary, long-term steroidogenesis with ACTH excess is sustained by genes controlling cholesterol supply and adrenal mass. ACTH effects on adrenal morphology and genes controlling cell hypertrophy, proliferation and apoptosis suggest the involvement of different cell types and separate molecular pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.