Abstract
BackgroundHaemophilus parasuis (H. parasuis) is the etiological agent of Glässer's disease in pigs. Currently, the molecular basis of this infection is largely unknown. The innate immune response is the first line of defense against the infectious disease. Systematical analysis on host innate immune response to the infection is important for understanding the pathogenesis of the infectious microorganisms.ResultsA total of 428 differentially expressed (DE) genes were identified in the porcine alveolar macrophages (PAMs) 6 days after H. parasuis infection. These genes were principally related to inflammatory response, immune response, microtubule polymerization, regulation of transcript and signal transduction. Through the pathway analysis, the significant pathways mainly concerned with cell adhesion molecules, cytokine-cytokine receptor interaction, complement and coagulation cascades, toll-like receptor signaling pathway, MAPK signaling pathway, suggesting that the host took different strategies to activate immune and inflammatory response upon H. parasuis infection. The global interactions network and two subnetworks of the proteins encoded by DE genes were analyzed by using STRING. Further immunostimulation analysis indicated that mRNA levels of S100 calcium-binding protein A4 (S100A4) and S100 calcium-binding protein A6 (S100A6) in porcine PK-15 cells increased within 48 h and were sustained after administration of lipopolysaccharide (LPS) and Poly (I:C) respectively. The s100a4 and s100a6 genes were found to be up-regulated significantly in lungs, spleen and lymph nodes in H. parasuis infected pigs. We firstly cloned and sequenced the porcine coronin1a gene. Phylogenetic analysis showed that poCORONIN 1A belonged to the group containing the Bos taurus sequence. Structural analysis indicated that the poCORONIN 1A contained putative domains of Trp-Asp (WD) repeats signature, Trp-Asp (WD) repeats profile and Trp-Asp (WD) repeats circular profile at the N-terminus.ConclusionsOur present study is the first one focusing on the response of porcine alveolar macrophages to H. parasuis. Our data demonstrate a series of genes are activated upon H. parasuis infection. The observed gene expression profile could help screening the potential host agents for reducing the prevalence of H. parasuis and further understanding the molecular pathogenesis associated with H. parasuis infection in pigs.
Highlights
Haemophilus parasuis (H. parasuis) is the etiological agent of Glässer’s disease in pigs
The results indicated that the H. parasuis could be detected in the lymph nodes, lungs and spleen in all of the three pigs that challenged with H. parasuis serovar 5 SH0165 strain
Phagocytosis is a cytoskeleton-dependent process of engulfment of large particles, and macrophages could present a restricted number of phagocytic receptors that induce rearrangements in the actin cytoskeleton that lead to the internalization of the particle [36]
Summary
Haemophilus parasuis (H. parasuis) is the etiological agent of Glässer’s disease in pigs. The innate immune response is the first line of defense against the infectious disease. Systematical analysis on host innate immune response to the infection is important for understanding the pathogenesis of the infectious microorganisms. The high throughput cDNA microarray represents a powerful tool for analyzing the molecular events in bacteria-host cell interactions [14]. This technology has been useful in identifying changes in gene expression both in cultured cells and in whole organisms infected with pathogens [12,15,16]. We applied this high throughput cDNA microarray assay to improve our understanding of the innate immune response of macrophages to H. parasuis infection
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.