Abstract
The force produced by a single molecule of Escherichia coli RNA polymerase during transcription was measured optically. Polymerase immobilized on a surface was used to transcribe a DNA template attached to a polystyrene bead 0.5 micrometer in diameter. The bead position was measured by interferometry while a force opposing translocation of the polymerase along the DNA was applied with an optical trap. At saturating nucleoside triphosphate concentrations, polymerase molecules stalled reversibly at a mean applied force estimated to be 14 piconewtons. This force is substantially larger than those measured for the cytoskeletal motors kinesin and myosin and exceeds mechanical loads that are estimated to oppose transcriptional elongation in vivo. The data are consistent with efficient conversion of the free energy liberated by RNA synthesis into mechanical work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.