Abstract

Foot-and-mouth disease (FMD) is a highly contagious disease that results in enormous economic loses worldwide. Although the protection provided by vaccination is limited during early infection, it is recognized as the best method to prevent FMD outbreaks. Furthermore, the mechanism of host early responses against foot-and-mouth disease virus (FMDV) infection remains unclear. In our study, a pig kidney cell line (PK-15) was used as a cell model to reveal the mechanism of early pig responses to FMDV infection. Four non-treated control and four FMDV-treated PK-15 cells were sequenced with RNA-seq technology, and the differentially expressed genes (DEGs) were analyzed. The results showed that 1212 DEGs were in the FMDV-infected PK-15 cells, including 914 up-regulated and 298 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in the tumor necrosis factor (TNF), cytokine-cytokine receptor interaction, NOD-like receptor, toll-like receptor, NF-κB, and the chemokine signaling pathways. To verify the results of the DEGs, 30 immune-related DEGs (19 up-regulated and 11 down-regulated) were selected for Quantitative Reverse Transcriptase polymerase chain reaction (RT-qPCR) verification. The results showed that RT-qPCR-measured genes exhibited a similar pattern as the RNA-seq analyses. Based on bioinformatics analysis, during FMDV early infection, we found that a series of cytokines, such as interleukins (IL6), chemokines (CXCL2, CCL20 and CCL4), and transcription factors (ZFP36, FOS, NFKBIA, ZBTB3, ZNF503, ZNF283, dymeclin (DYM), and orthodenticle homeobox 1 (OTX1)) were involved in the battle between FMDV and the host. Combined with their features and functions, we propose inflammation as the main early mechanism by which the host responds to FMDV infection. These data provide an additional panel of candidate genes for deciphering the mechanisms of a host’s early response against FMDV infection.

Highlights

  • Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals [1]which is endemic in many regions of the world, causing enormous economic losses due to reduced productivity and trade restrictions [2]

  • All gene expression (GO) terms are grouped into three major categories: Blue is for biological processes, green is for cellular components, and red is for molecular function

  • A total of 2270 differentially expressed genes (DEGs) were classified to the unique gene matches, including 1375 DEGs (60.6%) to biological processes, 651 DEGs (28.7%) to cellular components, and 244 DEGs (10.7%) to molecular function

Read more

Summary

Introduction

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals [1]which is endemic in many regions of the world, causing enormous economic losses due to reduced productivity and trade restrictions [2]. Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals [1]. According to the World Organization for Animal Health, FMD is a notifiable disease of ruminants. The use of FMD vaccines to protect against early infection is limited [4]. The mechanism of the host’s early responses against foot-and-mouth disease virus (FMDV). A novel strategy is required to control early-stage FMDV infection. Significant Enriched GO Terms (Top 30) Number of genes. All GO terms are grouped into three major categories: Blue is for biological processes, green is for cellular components, and red is for molecular function. A total of 2270 DEGs were classified to the unique gene matches, including 1375 DEGs (60.6%) to biological processes, 651 DEGs (28.7%) to cellular components, and 244 DEGs (10.7%) to molecular function. The regulation of metabolic processes is the most significant enriched GO term, followed by regulation of primary metabolic processes, regulation of cellular metabolic processes, and so forth

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.