Abstract

Microalgae possess numerous cellular mechanisms specifically employed for acclimating the photosynthetic pathways to changes in the physical environment. Despite the importance of coral-dinoflagellate symbioses, little focus has been given as to how the symbiotic algae (Symbiodinium spp.) regulate the expression of their photosynthetic genes. This study used real-time PCR to investigate the transcript abundance of the plastid-encoded genes, psbA (encoding the D1 protein of photosystem II) and psaA (encoding the P700 protein in photosystem I), within the cultured Symbiodinium ITS-2 (internal transcribed spacer region) types A20 and A13. Transcript abundance was monitored during a low to high-light shift, as well as over a full diel light cycle. In addition, psaA was characterized in three isolates (A20, A13, and D4-5) and noted as another example of a dinoflagellate plastid gene encoded on a minicircle. In general, the overall incongruence of transcript patterns for both psbA and psaA between the Symbiodinium isolates and other models of transcriptionally controlled chloroplast gene expression (e.g., Pisum sativum [pea], Sinapis alba [mustard seedling], and Synechocystis sp. PCC 6803 [cyanobacteria]) suggests that Symbiodinium is reliant on posttranscriptional mechanisms for homeostatic regulation of its photosynthetic proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call