Abstract
The precise localization of transcribed DNA and resulting RNA is an important aspect of the functional architecture of the nucleus. To this end we have developed a novel in situ hybridization approach in combination with immunoelectron microscopy, using sense and anti-sense RNA probes that are derived from total cellular or cytoplasmic poly(A+) RNA. This new technology is much more gentle than classical in situ hybridization using DNA probes and shows excellent preservation of nuclear structure. Carried out on ultrathin sections of fixed and resin-embedded COS-7 cells, it revealed at high resolution the localization of the genes that code for the cellular mRNAs. Quantitative analysis shows that most transcribed DNA is concentrated in the perichromatin region, i.e. the interface between subchromosomal compact chromatin domains and the interchromatin space essentially devoid of DNA. The RNA that is produced is found mainly in the perichromatin region and the interchromatin space. These results imply that in the mammalian nucleus the chromatin fiber is folded so that active genes are predominantly present in the perichromatin region, which is the most prominent site of transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.