Abstract

Background and PurposeTranscranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in both acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), and Alzheimer’s disease (AD) patients based upon efficacy in translational animal models. However, there is limited information in the peer-reviewed literature pertaining to transcranial near-infrared laser transmission (NILT) profiles in various species. Thus, in the present study we systematically evaluated NILT characteristics through the skull of 4 different species: mouse, rat, rabbit and human.ResultsUsing dehydrated skulls from 3 animal species, using a wavelength of 800nm and a surface power density of 700 mW/cm2, NILT decreased from 40.10% (mouse) to 21.24% (rat) to 11.36% (rabbit) as skull thickness measured at bregma increased from 0.44 mm in mouse to 0.83 mm in rat and then 2.11 mm in rabbit. NILT also significantly increased (p<0.05) when animal skulls were hydrated (i.e. compared to dehydrated); but there was no measurable change in thickness due to hydration.In human calvaria, where mean thickness ranged from 7.19 mm at bregma to 5.91 mm in the parietal skull, only 4.18% and 4.24% of applied near-infrared light was transmitted through the skull. There was a slight (9.2-13.4%), but insignificant effect of hydration state on NILT transmission of human skulls, but there was a significant positive correlation between NILT and thickness at bregma and parietal skull, in both hydrated and dehydrated states.ConclusionThis is the first systematic study to demonstrate differential NILT through the skulls of 4 different species; with an inverse relationship between NILT and skull thickness. With animal skulls, transmission profiles are dependent upon the hydration state of the skull, with significantly greater penetration through hydrated skulls compared to dehydrated skulls. Using human skulls, we demonstrate a significant correlation between thickness and penetration, but there was no correlation with skull density. The results suggest that TLT should be optimized in animals using novel approaches incorporating human skull characteristics, because of significant variance of NILT profiles directly related to skull thickness.

Highlights

  • Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), Alzheimer’s disease (AD), Parkinson’s disease (PD) [1,2,3,4,5,6,7,8,9,10,11,12,13,14]

  • Using dehydrated skulls from 3 animal species, using a wavelength of 800nm and a surface power density of 700 mW/cm2, near-infrared laser transmission (NILT) decreased from 40.10% to 21.24% to 11.36% as skull thickness measured at bregma increased from 0.44 mm in mouse to 0.83 mm in rat and 2.11 mm in rabbit

  • We demonstrate a significant correlation between thickness and penetration, but there was no correlation with skull density

Read more

Summary

Introduction

Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), Alzheimer’s disease (AD), Parkinson’s disease (PD) [1,2,3,4,5,6,7,8,9,10,11,12,13,14]. Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in both acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), and Alzheimer’s disease (AD) patients based upon efficacy in translational animal models. In the present study we systematically evaluated NILT characteristics through the skull of 4 different species: mouse, rat, rabbit and human

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.