Abstract

The blood-brain barrier (BBB) has been a major limitation in treating diseases of the brain because therapeutic agents are either unable to penetrate or have dose-limiting side effects in diffuse opening of the BBB. A previous study demonstrated that focused ultrasound (FUS) can locally open the BBB in a rabbit model when a piece of skull is removed and that magnetic resonance imaging (MRI) can be used to guide and monitor the procedure. This study examined whether the same desired effect of local BBB disruption can be achieved by applying FUS through an intact skull in a rat model. Twenty-eight Sprague-Dawley rats were anesthetized, shaved, and sonicated at four focal locations in the brain, using a 1.5-MHz focused transducer. Contrast-enhanced MR images were obtained before and after sonication. The images indicated contrast agent penetration at the focal coordinates following Optison-enhanced sonication. This study demonstrated that the distortion of the ultrasound beam by the rat skull was not significant enough to inhibit focal BBB opening. Subsequent experiments using MRI-guided FUS to aid in targeted drug delivery to brain tumors in a rodent model could thus be performed more efficiently without cranial surgery. [Research funded by NIH Grant No. CA76550.]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.