Abstract

BackgroundSpinal cord ischaemia animal models were established by selective ligation of the lumbar artery in a craniocaudal direction between the renal artery and the aortic bifurcation. Transcranial electrical stimulation motor-evoked potentials were measured to enable their use in future studies on spinal cord ischaemia protection.MethodsThirty-three New Zealand rabbits were randomly divided into 6 groups. Transcranial electrical stimulation motor-evoked potentials were recorded before vascular ligation, 30 min after vascular ligation, and 2 days after vascular ligation. Motor functions were assessed after surgery and 2 days after vascular ligation. The specimens were taken 2 days after ligation for histopathologic observation.ResultsWith increased numbers of ligations, a transient extension of the latency became clear, but there were no significant differences in the statistical analysis. Analysis of variance after ligation at the same time in each group and t tests before and after ligation (P > 0.05) were not significant. One or 2 ligations did not cause spinal cord ischaemic damage. There were no significant differences before and after ligation for the amplitude (P > 0.05). With increased numbers of ligations, the amplitude before and after ligation was gradually reduced in the 3–5 ligation groups (P < 0.05).ConclusionsLigation of segmental spinal cord vessels on 1 or 2 levels did not cause ischaemic damage. Spinal cord ischaemia was observed after 3, 4, or 5 ligations. The amplitude was more sensitive to spinal cord ischaemia than latency. Spinal cord function can be predicted by early changes in the amplitude.

Highlights

  • Spinal cord ischaemia animal models were established by selective ligation of the lumbar artery in a craniocaudal direction between the renal artery and the aortic bifurcation

  • The aim of this study was to study the change of Tes-Motor-evoked potentials (MEPs) after different levels of permanent spinal cord ischaemia

  • Twenty-five rabbits were included in the spinal cord ischaemia groups

Read more

Summary

Introduction

Spinal cord ischaemia animal models were established by selective ligation of the lumbar artery in a craniocaudal direction between the renal artery and the aortic bifurcation. To better understand the compensatory mechanisms of spinal cord ischaemia and the features of spinal cord ischaemic injury responsible for loss of spinal cord function, more research is needed to understand the anatomical features and dynamics of spinal cord blood supply and the reactions of the spinal cord to different levels of permanent spinal cord ischaemia. In this experiment, we established different levels of permanent spinal cord ischaemia in rabbits by selective ligation of the lumbar artery in a craniocaudal direction between the renal artery and the aortic bifurcation. The aim of this study was to study the change of Tes-MEPs after different levels of permanent spinal cord ischaemia

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call