Abstract

Mixed results of the impact of transcranial direct current stimulation (tDCS) on working memory have been reported. Contrarily to previous studies who focused mainly on stimulating the dorsolateral prefrontal cortex, we modulated the left intraparietal sulcus (IPS) area which is considered to support attentional control aspects of working memory. Using a within-participant experimental design, participants completed three different conditions: anodal stimulation of the IPS, cathodal stimulation of the IPS, and sham stimulation of the IPS. Both visual and verbal working memory tasks were administered. In the visual task, participants had to memorize a random set of colored figures. In the verbal task, participants had to memorize a string of letters. Working memory load was manipulated in both tasks (six figures/letters vs. two figures/letters). No significant differences in accuracy or reaction time between the anodal, cathodal and sham conditions were found. Bayesian analysis supported evidence for an absence of effect. The results of the present study add to the growing body of contradictory evidence regarding the modulatory effects of single session tDCS on working memory performance.

Highlights

  • Working memory (WM) involves a number of cognitive processes that allow us to keep active a limited amount of information for a brief period of time

  • The aim of this study was to determine the impact of anodal and cathodal transcranial direct current stimulation (tDCS) of the intraparietal sulcus (IPS) on verbal and visuo-spatial WM performance

  • Because of the inconsistencies of the effect of tDCS stimulation of dorsolateral prefrontal cortex (DLPFC) on WM performance, we decided to target the IPS, a region associated to attentional control components of WM

Read more

Summary

Introduction

Working memory (WM) involves a number of cognitive processes that allow us to keep active a limited amount of information for a brief period of time. It is a crucial ability for decision-making and reasoning (Diamond, 2013). Many studies have tried to determine if WM capacity could be trained or enhanced, with highly variable degrees of success as regards both behavioral and neural stimulation techniques (Melby-Lervag & Hulme, 2013; Soveri et al, 2016). One of the neural stimulation techniques that is commonly used is transcranial direct current stimulation (tDCS). Anodal stimulation has mostly been used to increase behavioral performance while cathodal stimulation has been used to impair it. Stimulation effects have been shown to persist for a brief time even after stimulation has stopped (Kuo et al, 2013)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.