Abstract
Beyond focal effects, stroke lesions impact the function of distributed networks. We here investigated (1) whether transcranial direct current stimulation (tDCS) alters the network changes induced by cerebral ischemia and (2) whether functional network parameters predict the therapeutic efficacy of tDCS in a mouse model of focal photothrombotic stroke. Starting 3 days after stroke, cathodal tDCS (charge density=39.6 kC/m²) was applied over 10 days in male C57Bl/6J mice under light anesthesia over the lesioned sensory-motor cortex. Functional connectivity (resting-state functional magnetic resonance imaging) was evaluated for up to 28-day poststroke, with global graph parameters of network integration computed. Ischemia induced a subacute increase in connectivity accompanied by a significant reduction in characteristic path length, reversed by 10 days of tDCS. Early measures of functional network alterations and the network configuration at prestroke baseline predicted spontaneous and tDCS-augmented motor recovery. Stroke induces characteristic network changes throughout the brain that can be detected by resting-state functional magnetic resonance imaging. These network changes were, at least in part, reversed by tDCS. Moreover, early markers of a network impairment and the network configuration before the insult improve the prediction of motor recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.