Abstract
Exercise-induced hypoalgesia (EIH) describes acute reductions in pain that occur following exercise. Current evidence suggests that the magnitude of EIH is small-to-moderate at best, warranting exploration of novel avenues to bolster these effects. Transcranial direct current stimulation (tDCS) has been shown to relieve pain and represents a promising intervention that may enhance EIH. This study aimed to determine whether anodal tDCS of the primary motor cortex (M1) can augment EIH in healthy individuals experiencing experimentally-induced musculoskeletal pain. Twenty-four healthy subjects attended 2 experimental sessions (“Day 0” and “Day 2”). On Day 0, subjects were injected with nerve growth factor into their right extensor carpi radialis brevis to induce persistent elbow pain. On Day 2, each subject received active or sham tDCS over M1 followed by an isometric grip exercise. Pain intensity, muscle soreness, sensitivity (pressure pain thresholds), and conditioned pain modulation were assessed prior to the nerve growth factor injection, on Day 2 before tDCS, immediately post-exercise, and 15 minutes post-exercise. Active tDCS expedited the onset of EIH, inducing immediate reductions in pain intensity that were not present until 15 minutes post-exercise in the sham group. However, active tDCS did not reduce muscle soreness or sensitivity when compared to sham tDCS. PerspectiveThese findings suggest that active tDCS accelerates the onset of EIH in healthy individuals experiencing experimentally-induced pain. This may represent a promising means of enhancing adherence to exercise protocols. However, larger randomised controlled trials in persistent pain populations are required to confirm the clinical impact of these findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.