Abstract

The ability to exert self-control over temptation is a fundamental component of smoking behavior change. Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) has been shown to modulate cognitive control circuits. Although prior studies show that stimulation reduces cigarette craving and self-reported smoking, effects on ability to resist smoking have not been investigated directly. We assessed effects of a single 20-minute session of 1.0 mA anodal stimulation over the left DLPFC with cathodal stimulation over the right supra-orbital area (vs. sham stimulation) on ability to resist smoking in a validated smoking lapse paradigm. Twenty-five participants completed two tDCS sessions (active and sham stimulation) in a within-subject, double-blind, randomized and counterbalanced order with a 2-week washout period. Following overnight abstinence, participants received tDCS in the presence of smoking related cues; they had the option to smoke at any time or receive $1 for every 5 minutes they abstained. After 50 minutes, they participated in a 1 hour ad libitum smoking session. Primary and secondary outcomes were time to first cigarette and cigarette consumption, respectively. In multiple regression models, active tDCS (compared to sham) significantly increased latency to smoke (p = 0.02) and decreased the total number of cigarettes smoked (p = 0.014) during the session. These findings suggest that acute anodal stimulation over the left DLPFC (with cathodal stimulation over the right supra-orbital area) can improve ability to resist smoking, supporting the therapeutic potential of tDCS for smoking cessation treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call